

SPPT-PBXX-X80D

2.5Gbps SFP Bi-Directional Transceiver, 80km Reach

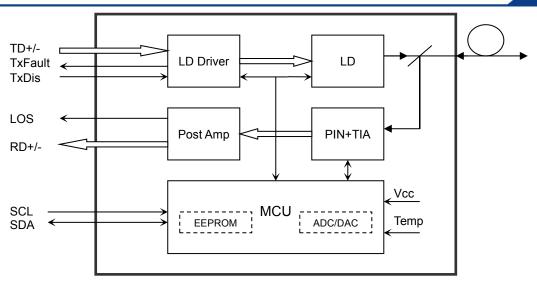
1490nm Tx/ 1550nm Rx & 1550nm Tx/ 1490nm Rx

Features

- Dual data-rate of 2.488Gbps/2.125Gbps operation
- 1490nm or 1550nm DFB laser and PIN photo detector for 80km transmission
- Compliant with SFP MSA and SFF-8472 with simplex LC or SC receptacle
- Digital Diagnostic Monitoring: Internal Calibration or External Calibration
- Compatible with SONET OC-48 system
- Compatible with RoHS
- +3.3V single power supply
- Operating case temperature range of 0°C to +70°C (Commercial) or -40°C to +85°C (Industrial)

Applications

- SDH STM-16 and SONET OC-48 system
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems


Description

The SFP-BIDI transceivers are high performance, cost effective modules supporting dual data-rate of 2.488Gbps/2.125Gbps and 80km transmission distance with SMF.

The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements

The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Absolute Maximum Ratings

	,	i		'n
1	١	l	7	I
7	I	y	ı	ı
ı		ı	I	7

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case	Standard	Та	0		+70	°C
Temperature	Industrial	Тс	-40		85	°C
Power Sup	Power Supply Voltage		3.13	3.3	3.47	V
Power Sup	Power Supply Current				170	mA
Data Rate	Gigabit Ethernet			2.488		Gbps
	Fiber Channel			1.063		- · P -

Optical and Electrical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes		
	Transmitter							
Centre Wavelength	λο	1470	1490	1510	nm	1490nm TX		
		1500	1550	1580	nm	1550nm TX		
Spectral Width (RMS)	Δλ			1	nm			
Side Mode Suppression Ratio	SMSR	30			dB			

Average Ou	ıtput Power	Pout	-3		0	dBm	
Extincti	on Ratio	ER	9			dB	
	e/Fall Time ~80%)	tr/tf			0.16	ns	
	ut Swing ential	$V_{ m IN}$	400		1800	mV	2
	fferential dance	Z_{IN}	90	100	110	Ω	
TxDisable	Disable		2.0		Vcc	V	
1 XDISaule	Enable		0		0.8	V	
TE14	Fault		2.0		Vcc	V	
TxFault	Normal		0		0.8	V	
			Recei	ver			
Receiver S	Sensitivity				-28	dBm	3
Receiver	Overload		-1			dBm	3
LOS De	-Assert	LOS_D			-29	dBm	
LOS A	Assert	LOS_A	-40			dBm	
LOS Hy	steresis		0.5	3	5	dB	
Data Outp Differ		Vout	400		1800	mV	4
LC)C	High	2.0		Vcc	V	
	<i>J</i> o	Low			0.8	V	

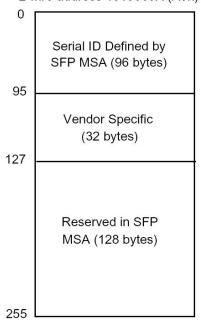
Notes:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 2^7 -1 test pattern @1250Mbps, BER $\leq 1 \times 10^{-12}$.
- 4. Internally AC-coupled.

Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
TxDisable Negate Time	t_on			1	ms
TxDisable Assert Time	t_off			10	μs
Time To Initialize, including Reset of TxFault	t_init			300	ms
TxFault Assert Time	t_fault			100	μs
TxDisable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz

MOD_DEF (0:2)-High	VH	2	Vcc	V
MOD_DEF (0:2)-Low	VL		0.8	V

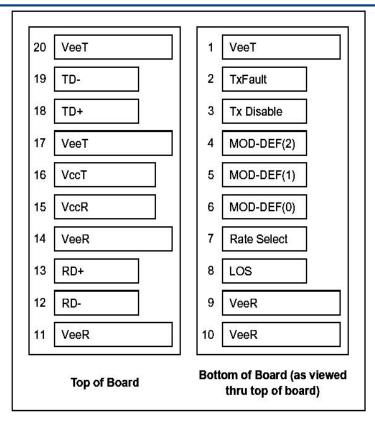

Diagnostics

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3°C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TxPower	-3 to 0	dBm	±3dB	Internal / External
Rx Power	-28 to -1	dBm	±3dB	Internal / External

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA). The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring. The digital diagnostic memory map specific data field defines as following.

2 wire address 1010000X (A0h)


2 wire address 1010001X (A2h)

Α.	
0 55	Alarm and Warning Thresholds (56 bytes)
95	Cal Constants (40 bytes)
	Real Time Diagnostic Interface (24 bytes)
119 127	Vendor Specific (8 bytes)
	User Writable EEPROM (120 bytes)
247	
255	Vendor Specific (8 bytes)

Pin Definitions

Pin Diagram

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	$ m V_{EET}$	Transmitter Ground	1	
2	TxFAULT	Transmitter Fault Indication	3	Note 1
3	TxDISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	$ m V_{EER}$	Receiver ground	1	
10	$ m V_{EER}$	Receiver ground	1	
11	$ m V_{EER}$	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	$ m V_{EER}$	Receiver ground	1	
15	V_{CCR}	Receiver Power Supply	2	
16	V_{CCT}	Transmitter Power Supply	2	
17	$ m V_{EET}$	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	$ m V_{EET}$	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TxFault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TxDisable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

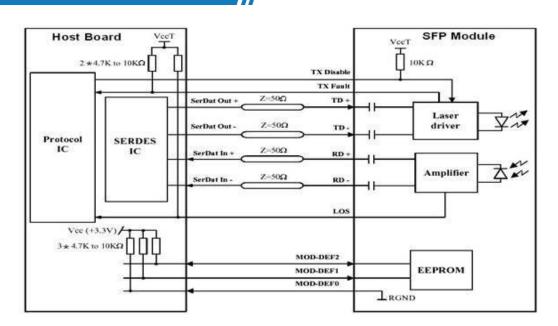
Low (0 to 0.8V): Transmitter on

(>0.8V, <2.0V): Undefined

High (2.0 to 3.465V): Transmitter Disabled

Open: Transmitter Disabled

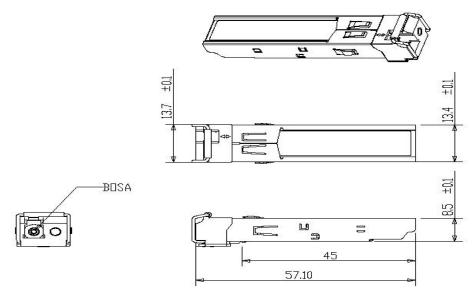
3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

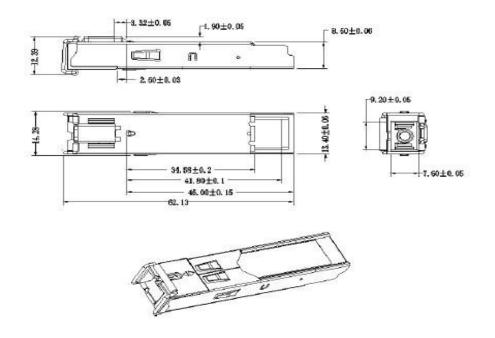

Mod-Def 0 is grounded by the module to indicate that the module is present

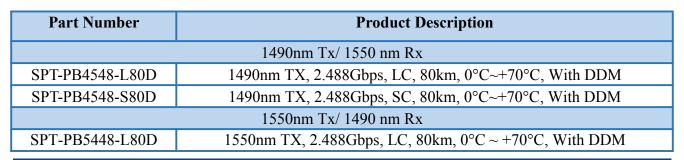
Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

- 4) LOS is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.


Recommended Interface Circuit


Mechanical Dimensions


A. LC Receptacle

B. SC Receptacle

Ordering information

SPT-PB5448-S80D

1550nm TX, 2.488Gbps, SC, 80km, 0°C ~ +70°C, With DDM

Note:

1. Default operating case temperature is $0 \sim 70^{\circ}$ C. If you need -40 ~85°C products, please contact us.

2. If you need more customized services, please contact us.

E-mail: <u>info@sopto.com.cn</u>

Web: http://www.sopto.com.cn