

SPT-P1S131G-L20D

1.25Gb/s Self looping Single Mode Datacom SFP Transceiver

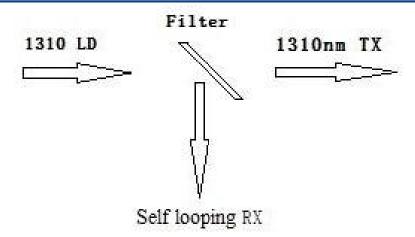
Features

- Up to 1.25Gb/s Self looping data links
- Hot-pluggable SFP footprint
- Built-in digital diagnostic functions
- 1310nm FP laser transmitter
- Single LC receptacle
- RoHS compliant and Lead Free
- Up to 20 km on 9/125um SMF
- Metal enclosure for lower EMI
- Single 3.3V power supply
- Low power dissipation <600mW typical
- Operating case temperature:

Standard: 0 to +70°C

Applications

- 1.25Gb/s 1000Base-LX Ethernet
- 1.06 Gb/s Fibre Channel


Description

SPT-P1S131G-L20D 1.25Gb/s Small Form Factor Pluggable (SFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA). They simultaneously comply with Gigabit Ethernet as specified in IEEE Std 802.3 and 1x Fibre Channel as defined in FC-PI-4 Rev. 8.00. Digital diagnostics functions are available via the 2-wire serial bus specified in the SFP MSA.

Schematic diagram of optical path

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Standard	Тс	0		+70	°C
Power Sup	ply Voltage	Vcc	3.1	3.3	3.5	V
Power Supply Current		Icc			180	mA
Data Rate	Gigabit Ethernet			1.25		Chna
Data Rate	Fiber Channel			1.063		Gbps

Optical and Electrical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
	Transmitter					
Centre Wavelength	λc	1270	1310	1350	nm	
Average Output Power	Pout	-15		-7	dBm	1
Extinction Ratio	ER	9			dB	
Receiver						
Average Received Power	Rx		-15		dBm	

Notes:

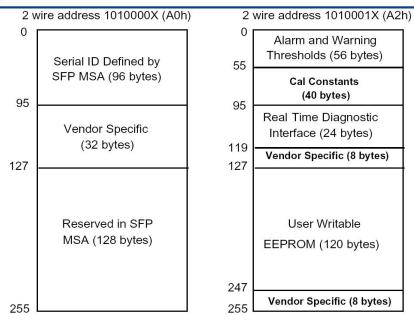
1. Average Received Power comes from TX.

General Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Data Rate	BR	1062		1250	Mb/s	
Bit Error Rate	BER			10E ⁻¹²		PRBS 7
Max. Supported Link Length	L		10	20	KM	
on 9/125um SMF @ 1X Fibre						
Channel						
Max. Supported Link Length on 9/125um SMF @ Gigabit Ethernet	L		10	20	KM	

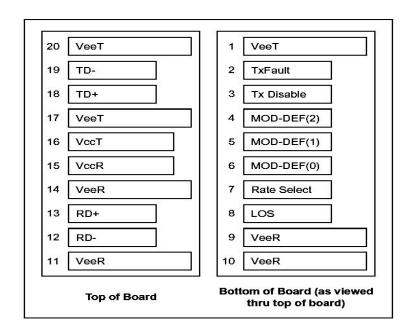
Digital Diagnostic Specifications

Parameter	Symbol	Min	Max	Accuracy	Unit	Condition
Transceiver temperature	D Temp	-40	85	±5	$^{\circ}\mathbb{C}$	
Transceiver supply voltage	D Voltage	3.1	3.5	±3%	V	PRBS 7
Transmitter bias current	D Bias	0	70	±10%	mA	
Transmitter output power	D TxPo	-15	-7	±3dB	dBm	
Average optical input power	D RxPo	-26	1	±3dB	dBm	


Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.


The digital diagnostic memory map specific data field defines as following.

Pin Definitions

Pin Diagram

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	VEET	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3

7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VEER	Receiver ground	1	
10	VEER	Receiver ground	1	
11	VEER	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VEER	Receiver ground	1	
15	VCCR	Receiver Power Supply	2	
16	VCCT	Transmitter Power Supply	2	
17	VEET	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VEET	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on

(>0.8V, < 2.0V): Undefined

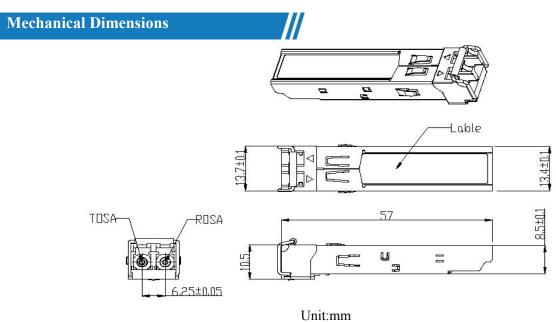
High (2.0 to 3.465V): Transmitter Disabled

Open: Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

Mod-Def 0 is grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID


Mod-Def 2 is the data line of two wire serial interface for serial ID

- 4) LOS is an open collector output, which should be pulled up with a $4.7k\sim10k\Omega$ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.

6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit SFP Module **Host Board** 10ΚΩ TX Fault TD Protocol IC SERDES Z=50Ω IC RD-Amplifier RD Vec (+3.3V) 3 * 4.7K to 10KΩ EEPROM MOD-DEF1 MOD-DEF0

Ordering information

Part Number	Product Description
SPT-P1S131G-L20D	1.25Gb/s Self looping Single Mode Datacom SFP Transceiver,1310nm, 20km, 0°C ~ +70°C,DDM

Note: If you need more customized services, please contact us.

E-mail: info@sopto.com.cn

Web http://www.sopto.com.cn